CUSTOMS ACT 1986

Customs (Prohibited Imports and Exports) (Amendment) (No. 2) Regulations 2020

IN exercise of the powers conferred on me by section 64 of the Customs Act 1986, I hereby make these Regulations—

Short title and commencement

- 1.—(1) These Regulations may be cited as the Customs (Prohibited Imports and Exports) (Amendment) (No. 2) Regulations 2020.
 - (2) These Regulations come into force on 1 January 2021.
- (3) In these Regulations, the Customs (Prohibited Imports and Exports) Regulations 1986 is referred to as the "Principal Regulations".

Schedule 1 amended

- 2. Schedule 1 to the Principal Regulations is amended after item 18 by inserting the following new item—
 - "19. A polystyrene product as defined in section 45B(1) of the Environment Management Act 2005 but not including any polystyrene product exempted under section 45B(5)(*b*) of that Act.".

Schedule 5 amended

- 3. Schedule 5 to the Principal Regulations is amended by—
 - (a) in Part 1, deleting Group 1 and substituting the following—

"Group 1 – any of the following Chlorofluorocarbons whether virgin, recycled or in a mixture—

	Substance	Ozone	100-Year Global
Formula		Depleting	Warming Potential
		Potential	
CFCl ₃	CFC-11	1.0	4,750
CF ₂ Cl ₂	CFC-12	1.0	10,900
$C_2F_3Cl_3$	CFC-113	0.8	6,130
$C_2F_4Cl_2$	CFC-114	1.0	10,000
C_2F_5Cl	CFC-115	0.6	7,370";
CF ₃ Cl	CFC-13	1.0	
C ₂ FCl ₅	CFC-111	1.0	

Chemical	Substance	Ozone	100-Year Global
Formula		Depleting	Warming Potential
		Potential	
$C_2F_2Cl_4$	CFC-112	1.0	
C ₃ FCl ₇	CFC-211	1.0	
C ₃ F ₂ Cl ₆	CFC-212	1.0	
$C_3F_3Cl_5$	CFC-213	1.0	
$C_3F_4Cl_4$	CFC-214	1.0	
$C_3F_5Cl_3$	CFC-215	1.0	
$C_3F_6Cl_2$	CFC-216	1.0	
C_3F_7C1	CFC-217	1.0	

(b) in Part 2, deleting Group 1 and substituting the following—

"Group 1 – HCFCs – any of the following Hydrochlorofluorocarbons whether virgin, recycled or in a mixture — $\,$

Chemical Formula	Substance	Number of isomers	Ozone Depleting Potential*	100-Year Global Warming Potential***
CHFCl ₂	HCFC-21**	1	0.04	151
CHF,CÎ	HCFC-22**	1	0.055	1,810
CH ₂ FCl	HCFC-31	1	0.02	
C ₂ HFC1 ₄	HCFC-121	2	0.01-0.04	
$C_2HF_2Cl_3$	HCFC-122	3	0.02-0.08	
$C_2HF_3Cl_2$	HCFC-123	3	0.02-0.06	77
CHCl,CF,	HCFC-123**	-	0.02	
C ₂ HF ₄ Cl	HCFC-124	2	0.02-0.04	609
CHFCICF,	HCFC-124**	-	0.022	
C,H,FCl,	HCFC-131	3	0.007-0.05	
$C_2H_2F_2CI_2$	HCFC-132	4	0.008-0.05	
C,H,F,Cl	HCFC-133	3	0.02-0.06	
C ₂ H ₃ FCl ₂	HCFC-141	3	0.005-0.07	
CH ₃ CFCl ₂	HCFC-141b**	-	0.11	725
C_2H_4FC1	HCFC-151	2	0.003-0.005	
C ₃ HFCl ₆	HCFC-221	5	0.015-0.07	
C ₃ HF ₂ Cl ₅	HCFC-222	9	0.01-0.09	
C ₃ HF ₃ Cl ₄	HCFC-223	12	0.01-0.08	
$C_3HF_4Cl_3$	HCFC-224	12	0.01-0.09	
$C_3HF_5Cl_2$	HCFC-225	9	0.02-0.07	
CF,CF,CHCl,	HCFC-225ca**	-	0.025	122
CF,CICF,CHCIF	HCFC-225cb**	-	0.033	595
C_3HF_6C1	HCFC-226	5	0.02-0.10	
$C_3H_2FCl_5$	HCFC-231	9	0.05-0.09	
$C_3H_2F_2CI_4$	HCFC-232	16	0.008-0.10	
$C_3^2H_2^2F_3^2Cl_3^7$	HCFC-233	18	0.007-0.23	

Chemical Formula	Substance	Number of isomers	Ozone Depleting Potential*	100-Year Global Warming Potential***
$C_3H_2F_4Cl_2$	HCFC-234	16	0.01-0.28	
$C_3H_2F_5C1$	HCFC-235	9	0.03-0.52	
C ₃ H ₃ FCl ₄	HCFC-241	12	0.004-0.09	
C ₃ H ₃ F ₂ Cl ₃	HCFC-242	18	0.005-0.13	
$C_3H_3F_3Cl_2$	HCFC-243	18	0.007-0.12	
$C_3H_3F_4C1$	HCFC-244	12	0.009-0.14	
$C_3H_4FCl_3$	HCFC-251	12	0.001-0.01	
$C_3H_4F_2Cl_2$	HCFC-252	16	0.005-0.04	
$C_3H_4F_3C1$	HCFC-253	12	0.003-0.03	
C ₃ H ₅ FCl ₂	HCFC-261	9	0.002-0.02	
C ₃ H ₅ F ₂ Cl	HCFC-262	9	0.002-0.02	
C_3H_6FC1	HCFC-271	5	0.001-0.03	

*Where a range of Ozone Depleting Potentials is indicated, the highest value in that range shall be used for the purposes of the Montreal Protocol on Substances that Deplete the Ozone Layer. The Ozone Depleting Potentials listed as a single value have been determined from calculations based on laboratory measurements. Those listed as a range are based on estimates and are less certain. The range pertains to an isomeric group. The upper value is the estimate of the Ozone Depleting Potential of the isomer with the highest Ozone Depleting Potential, and the lower value is the estimate of the Ozone Depleting Potential of the isomer with the lowest Ozone Depleting Potential.

- ** Identifies the most commercially viable substances with Ozone Depleting Potential values listed against them to be used for the purposes of the Montreal Protocol on Substances that Deplete the Ozone Layer.
- *** For substances for which no Global Warming Potential is indicated, the default value 0 applies until a Global Warming Potential value is included.";
- (c) after Part 2, inserting the following new Part—

"PART 2A

Group 1 - HFCs - any of the following Hydrofluorocarbons whether virgin, recycled or in a mixture—

Chemical Formula	Substance	100-Year Global Warming Potential
CHF,CHF,	HFC-134	1,100
CH ₂ FCF ₃	HFC-134a	1,430
CH,FCHF,	HFC-143	353
CHF,CH,CF,	HFC-245fa	1,030
CF,CH,CF,CH,	HFC-365mfc	794

Chemical Formula	Substance	100-Year Global Warming Potential
CF ₃ CHFCF ₃	HFC-227ea	3,220
CH,FCF,CF ₃	HFC-236cb	1,340
CHF,CHFCF,	HFC-236ea	1,370
CF ₃ CH ₂ CF ₃	HFC-236fa	9,810
CH,FCF,CHF,	HFC-245ca	693
CF ₃ CHFCHFCF ₂ CF ₃	HFC-43-10mee	1,640
CH ₂ F ₂	HFC-32	675
CHF,CF ₃	HFC-125	3,500
CH ₃ CF ₃	HFC-143a	4,470
CH ₃ F	HFC-41	92
CH,FCH,F	HFC-152	53
$CH_3^2CHF_2^2$	HFC-152a	124

Group 2 — Trifluoromethane

Chemical Formula	Substance	100-Year Global
		Warming Potential
CHF ₃	HFC-23	14,800"; and

- (*d*) in Part 3—
 - (i) in paragraph (b), deleting "Part 1" and substituting "Parts 1 and 2A";
 - (ii) in paragraph (c)—
 - (A) deleting "Part 1" and substituting "Parts 1 and 2A"; and
 - (B) after ";", deleting "and";
 - (iii) in paragraph (d)—
 - (A) deleting "Part 1" and substituting "Parts 1, 2 and 2A"; and
 - (B) deleting "." and substituting "; and"; and
 - (iv) after paragraph (d), inserting the following new paragraph—
 - "(e) import any apparatus or equipment containing any controlled substance listed in Parts 1, 2 and 2A.".

Schedule 6 amended

- 4. Schedule 6 to the Principal Regulations is amended after item 4 by inserting the following new item— $\,$
 - "5. A polystyrene product as defined in section 45B(1) of the Environment Management Act 2005 but not including any polystyrene product exempted under section 45B(5)(*b*) of that Act.".

Made this 31st day of December 2020.

A. SAYED-KHAIYUM Attorney-General and Minister for Economy